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ABSTRACT: We carried out deconvolution of the molecular
weight distribution curves from gel permeation chromatog-
raphy for polyolefins into individual active sites consider-
ing Flory distribution by an evolutionary-computing-based
real-coded genetic algorithm, a nonlinear multivariate opti-
mization algorithm. We applied the deconvolution to homo-
polymers of 1-octene synthesized using heterogeneous
Ziegler–Natta catalysts with different amounts of hydrogen.
The molecular weight distribution was deconvoluted in to
five Flory distributions, which showed a sensitivity to hydro-
gen amounts. With no hydrogen presence, the peaks corre-

sponding to high-molecular-weight fractions were intense. As
the amount of hydrogen was increased, not only did the
intensities of the high-molecular-weight peaks decrease, but
also peaks corresponding to low-molecular-weight fractions
were observed. The method allowed us to determine
the active site distribution of the polymer molecular weight
distribution obtained from gel permeation chromatography.
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INTRODUCTION

The molecular weight distribution (MWD) of poly-
mers is important, as it determines many of the
physicochemical properties of polymers.1,2 The
toughness, hardness, stiffness, strength, and visco-
elasticity are among some of the properties that are
dependent on MWD. If the molecular weight is low,
the mechanical properties and transition tempera-
tures of the polymer will generally be insufficient
for commercial applications, and if the molecular
weight is too high, it poses problems during process-
ing. Thus, for commercial applications of polymers,
there needs to be balance in the distribution of low-
and high-molecular-weight fractions for the desired
processability window and load-bearing capabilities.

Gel permeation chromatography (GPC) and physi-
cal separation with selective solvent extraction at
various temperatures are the tools used for the sepa-
ration of polymer components.3 Because of the high
level of automation, sophistication, reliability, and
reproducibility of GPC instrumentation, a much
higher resolution of data can be produced for mech-
anistic studies in comparison to basic solvent

extraction techniques; this makes it the best tool for
understanding the MWD of polymers. The separa-
tion of the GPC curve into individual Flory distribu-
tion curves provides detailed information regarding
the active site distribution on the basis of fractions
that have distinct molecular weight profiles; this
leads to a lot of insight into the polymerization
mechanism.4–14 The deconvolution of the MWDs of
polymer resins, which is used for the characteriza-
tion of polymer resins with broad and/or bimodal
MWDs, has been carried out by various methodolo-
gies, such as the Haarhoff-Van der Linde function,4

commercial software (Scientist,5 Peakfit,6 Microsoft
Excel Solver7), and the Levenberg–Marquardt and
Golub–Pereyra methods.8

A genetic algorithm, based on Darwin’s theory of
natural evolution, is a numerical optimization algo-
rithm that is highly suited for large-scale optimiza-
tion problems.15–18 The advent of artificial-intelli-
gence-based evolutionary programming has enabled
us to tackle problems that are difficult to solve with
traditional optimization techniques, including prob-
lems that are not well defined or are difficult to
model mathematically, discontinuous, highly nonlin-
ear, or stochastic. Genetic algorithms have found
applications in a wide range of fields, including
robotics, protein folding, and engineering design
problems. Chemists have also started to benefit from
these, as indicated by the increasing number of
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publications involving genetic algorithms, such as
for automated wavelength selection,19–22 reactivity
ratio optimization,23–26 and automated structure
elucidation.27–29 The algorithms provide several
advantages over linear or traditional nonlinear opti-
mization algorithms; for example, it works on gener-
ation principles whereby a number of data points
are solved simultaneously, and the mutation subrou-
tine provides a tool for moving from the local max-
ima or minima.15–18

The real-coded genetic algorithm (RCGA; Fig. 1) is
initialized by the random generation of a set of pa-
rameters (population) to be optimized in the defined
search space. In the next step, the parameters are
selected on the basis of their fitness (how closely
they resemble the solution). The selected parameters
are further operated to generate the next generation
of parameters with a crossover operation (the crea-
tion of the next generation). Some of the selected
newly created parameters are subjected to mutation,
whereby the parameters are extended in the search
space to prevent stagnation/locking in the local

domains. The algorithm scans the whole of the
search space and evolves toward a global minima or
maxima as required with each cycle of iteration. The
algorithm continues until the parameters with the
desired fitness are achieved or until a defined num-
ber of generations is crossed.
Heterogeneous Ziegler–Natta catalysts are com-

plex systems for understanding, as there are number
of components involved during polymerization. The
basic factor over which everything revolves is the
formation of active centers that are responsible for
polymerization and stereospecificity. On the basis of
the assumptions that, throughout polymerization,
the reaction conditions remain constant and that the
catalyst is a mixture of a finite number of different
types of active sites, the MWD of the final polymer
obtained may be described as the sum of a finite
number of Flory distributions.9

It is well known that control over molecular
weight is attainable through hydrogen during the
Ziegler–Natta polymerization of a-olefins, as it
behaves as a chain-transfer agent.30–33 The intrigu-
ing fact here is that the catalyst sites responsible for
the production of the lower molecular weight frac-
tions are the ones affected by hydrogen more
strongly. So, understanding the Flory distribution
curves with changes in the hydrogen concentration
can be challenging and provides deeper insight into
the understanding of the active sites. In this article,
we report the advantages and application of RCGA-
based evolutionary computing for the deconvolution
of GPC curves of poly(1-octene) to understand the
effect of hydrogen concentration on the active
sites.34

EXPERIMENTAL

Materials

1-Octene (98%, Aldrich, USA) was used as received.
n-Decane (98%, Labort, India) and n-hexane (99%,
Labort, India) were dried under nitrogen over mo-
lecular sieves. A triethylaluminum (Witco, Germany)
solution was used at 10% (v/v) in n-decane. A
MgCl2-supported titanium catalyst (3.0 wt % Ti and
12 wt % diisobutyl phthalate) was used as a 3 wt %
catalyst slurry.35

Polymerization

All work relating to the handling of air- and mois-
ture-sensitive compounds were carried out in a
nitrogen atmosphere with standard Schlenk techni-
ques. A 1-L double-jacketed glass reactor equipped
with a mechanical stirrer with a glass stirrer with a
polytetrafluoroethylene blade was used to polymer-
ize 1-octene. The polymerization assembly was kept

Figure 1 Flowchart of the genetic algorithm.
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under nitrogen. Calculated amounts of n-hexane,
triethylaluminum (cocatalyst), and 1-octene were
added to the reactor. After the addition of the cata-
lyst, the same amount of catalyst was taken in a vol-
umetric flask for titanium estimation, which was
used to calculate the amount of catalyst used for
each polymerization. The reaction temperature was
then set to the required degree. The polymerization
was done for 2 h, after which the reaction was termi-
nated by the addition of methanol containing 5 wt %
HCl. The polymer was dried in vacuo at 60�C until a
constant weight was reached. Polymerizations were
performed at three different hydrogen concentrations
[0 (PO-1), 0.02 (PO-2), and 0.14 mol (PO-3)] to deter-
mine the effect on the active site distributions. The re-
actor temperature was set to 70�C with the pressure at
5 kg/cm2. After 2 h, the reaction was terminated by
the addition of acidified methanol. The polymer was
dried in vacuo at 60�C until a constant weight was
reached.

GPC

The MWD of the polymers was determined by size
exclusion chromatography with a Polymer Laborato-
ries PL-GPC 220 high-temperature chromatograph
instrument (columns: 3 � PLgel Mixed-B 10 lm)
and two detectors (a viscometer and refractometer)
in trichlorobenzene at flow rate of 1 mL/min at
145�C. The system was calibrated with polystyrene
standards with universal calibration.

GPC deconvolution

Deconvolution of the GPC profile was done into
Flory distribution curves with a genetic algorithm to
optimize the Flory components. The code for the
RCGA was written in Cþþ language. The iteration
was carried for 500 generations to obtain optimized
parameters with a population of 50 individuals.

RESULTS AND DISCUSSION

Flory distribution

The Flory distribution functions were applied to
the polymerization processes with the following
considerations:

1. The kinetic parameters were the same for all
chain-propagating species.

2. The chain termination reaction probability did
not depend on the chain length and was low.

3. The chain-propagating species concentration
remained constant.

4. Polymerization reactions were carried out at

constant concentrations of monomers and other
chemical species that may have affected the
molecular weight.9

The Flory theory states that the instantaneous num-
ber distribution function (F*) of growing polymer
chains with n monomer units is defined as follows:

F�ðnÞ ¼ a expð�anÞ (1)

where a is the ratio of the chain termination rate to
the chain propagation rate and is constant for a po-
lymerization and independent of n. It is defined as
follows:

a ¼
X

Rt=Rp (2)

where
P

Rt is the summation of the chain termina-
tion rates and Rp is the chain propagation rate.
For most olefin polymerizations with MgCl2-sup-

ported Ti-based Ziegler–Natta catalysts, with a con-
stant monomer concentration and a single active
center producing a large number of polymer chains,
the degree of polymerization is 1/a. The weight dis-
tribution function [F(w)], consisting of n monomer
units, is defined as follows:

FðwÞ ¼ nFðnÞR ½nFðnÞ� ¼ a2n expð�anÞ (3)

For the calculation of the theoretical GPC curve, as
described by Kissin [9], eq. (3) and the assumption
that a linear correlation exists between the retention
times and the peaks of monodisperse polymer frac-
tions leads to the following Flory distribution func-
tion in the GPC coordinates:

a2n2 expð�anÞversus log n (4)

The distribution function for an active site with frac-
tion f becomes the following:

fa2n2 expð�anÞversus log n (5)

The factor f needs to be incorporated, as the inten-
sity of each of the Flory distribution curve differs on
the basis of the MWD of the polymer.

RCGA

To initialize the RCGA, a population of 50 uniformly
distributed individuals or strings representing pa-
rameters to be optimized was randomly generated
in the bounds of the predefined search space. The
search space was defined for factor a as 0 < a < 0.04
(on the basis of the MWD of the polymer samples
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under consideration) and for factor f as 0 � f �1 to
deconvolute the GPC curve with the Flory distribu-
tion as given by eq. (5). Each string was character-
ized by the values of a and f. The search space was,
thus, 2 � i dimensions for an i number of Flory dis-
tribution curves with a factor of 2 for a and f param-
eters for each Flory distribution curve.

In the next step, the strings were evaluated by the
calculation of the value of the integral least-square
difference between the theoretical and experimental
curves (D):

D ¼
Xi

1

f½fa2n2 expð�anÞ�Theoretical

�½fa2n2 expð�anÞ�Experimentalg2
(6)

at different n values for i active sites for a given set
of a and f for theoretical curves. The value of
[fa2n2exp(�an)]Experimental was obtained from the
GPC data. The target was to minimize D and obtain
the best fit between the theoretical and experimental
GPC curves by the optimization of the a and f
parameters for each active site. The strings were
further operated by three operators, selection, cross-
over, and mutation, to create a new set of popula-
tion (Fig. 1). The strings were selected for crossover
on the basis of the fitness with a tournament selec-
tion operator. Randomly, b number of strings were
selected, and c (b > c) number of better fitting
strings (with lower D values) were carried over for
crossover; with the number of selected strings main-
tained at 50. The selected strings were then allowed
to produce the next generation, that is, to perform
crossover to diversify the genetic makeup and to
prevent stagnancy.

A heuristic crossover operator was applied on the
selected strings for the crossover to generate next
generation of population. The heuristic crossover op-
erator uses the fitness values of the two parent
strings to determine the direction of the search. The
offspring strings are created according to the follow-
ing equations (for values of a and f for each string):

X0 ¼ X þ rðX � YÞ
Y0 ¼ X

(7)

where X0 and Y0 are the progeny (next-generation
strings), X and Y are parents with X being the better
fitting parent, and r is a random number between 0
and 1.

To prevent the accidental trapping of individuals
in the local minima, a nonuniform mutation operator
was applied for mutation. This kept the population
from stagnating in the early stages of the evolution
and directed the probability of the mutation toward
zero as the generation number increased and allowed

the genetic algorithm to fine-tune the solution in the
later stages of evolution. The nonuniform mutation is
defined as follows:

X0 ¼ X þ r2ðXH � XÞ 1� Gen

Genmax

� �a

if r1 < 0:5

X0 ¼ X � r2ðX � XLÞ 1� Gen

Genmax

� �a

if r1 � 0:5

(8)

where X0 and X are the individuals after and before
the mutation, respectively; r1 and r2 are random
numbers between 0 and 1; XL and XH are the lower
and upper bounds for the X parameter (e.g., for fac-
tor f, 0 � f � 1), respectively; Gen is the number of
current generations; and Genmax is the maximum
number of generations.
Individuals move toward increasingly optimal so-

lutions over generations and make the genetic algo-
rithm highly probable for finding optimal solutions
to a mathematical problem for which there may not
be one correct answer. The functioning of the genetic
algorithm is demonstrated by a hypothetical case of
a bimodal polymer (Fig. 2) with two equally produc-
tive active sites (f1 ¼ f2 ¼ 0.5 and a1 ¼ 0.00448 and
a2 ¼ 0.001122). For the purpose of clarity, only the
optimization of f is illustrated in Figure 3 for the
two-site model in a two-dimensional search space.
In the first generation, the strings (f1 and f2) were
generated in the defined search space. Within 10
generations, the strings were observed to be con-
verging, although in local minima. At this stage, the
mutation played the critical role, and by the 20th
generation, some of the strings migrated to new
dimensions and moved toward the global minima.
The migration was evident in the 100th generation,
and by the 250th generation, the evolution moved
most of the population toward the global minima.
The mutation operator now limited the divergence
of the population, and thus, by the 250th generation,
most of the individuals converged at the global

Figure 2 GPC MWD model of a polymer with two active
sites.
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minima. This characteristic feature and its capability
to narrow down to good fitness after a small number
of function evaluations prompted the application of
the genetic algorithm for the optimization of the
Flory parameters for GPC deconvolution.

GPC deconvolution of poly(1-octene)

The MWDs obtained by the molecular weight analy-
sis of poly(1-octene) through GPC were deconvo-
luted into Flory distribution fractions with RCGA
methodology. For the understanding of different
active site variation and distribution relative to the
hydrogen as a chain-transfer agent, the high-pres-
sure slurry polymerization of 1-octene were con-
ducted at an Al/Ti molar ratio of 250 with an
MgCl2-supported TiCl4 catalyst having diisobutyl
phthalate as an internal donor. The high-pressure
polymerizations were done at PO-1, PO-2, and PO-3,
respectively.

The MWD curves for poly(1-octene) samples were
deconvoluted into five Flory components, and that
five-site deconvolution provided a good fit of the
tails of the MWDs. Here, one assumption, that each
Flory component corresponded to a polymer pro-
duced on a certain type of active center, was made

on the basis of the consideration that the polymer-
izations were conducted under mild conditions in
solution and that the influences of diffusion limita-
tion on MWD were neglected. This was helpful in
terms of figuring out the distribution of active sites
and the location of the position and relative peak in-
tensity of each deconvoluted Flory component.
The optimized a and f parameters of the individ-

ual Flory components are given in Table I, along
with the value of the weight-average molecular
weight (Mw), which corresponded to the maximum
of the given Flory component. The Flory curves
(peaks) were located in a specific range of molecular
weights to attain comparative information. For
example, peaks I were located in the molecular
weight range 9 � 105 to 10 � 105 corresponding to
highest molecular weight range, peaks II were in
the range 27 � 104 to 32 � 104, peaks III were in the
range 11 � 104 to 12 � 104, peaks IV were in the
range 37 � 103 to 43 � 103, and peaks V were in
the range 10 � 103 to 12 � 103 corresponding to low
molecular weights.
An examination of the data showed that, for the

polymer synthesized in the absence of hydrogen as
chain-transfer agent [Fig. 4(a)], peaks I–IV were
observed, where peaks I and II correspond to active

Figure 3 Critical effect of the mutation on the optimization of the parameters with the evolution of 50 individuals at (a)
1, (b) 10, (c) 25, (d) 50, (e) 100, and (f) 250 generations. The local minima are indicated by thick, dashed circles, and the
global minima are indicated by thin, dashed circles.
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sites producing high-molecular-weight fractions.
With the introduction of hydrogen (0.02 mol), peak
V, which corresponded to the lowest molecular
weight fraction having a low intensity, appeared as

shown in Figure 4(b). As the amount of hydrogen
was further increased (0.14 mol), peak I disappeared
completely, and peaks II–V were observed [Fig. 4(c)].
To further understand the influence of the hydro-

gen amount, the value of parameter f, corresponding
to the intensities (fraction) of these five Flory peaks
for the three experiments conducted and given in
Table I, was studied. At PO-1, where hydrogen was
absent, peak I, which corresponded to the highest
molecular weight fractions, had its maximum inten-
sity. Also, the intensities of the peaks decreased from
peak I to IV; this means that, when hydrogen was
not present, the active sites responsible for producing
high molecular weight were more prominent. With
the introduction of hydrogen (PO-2), the intensity of
peak I decreased drastically, and those of peaks III
and IV increased. Also, peak V, corresponding to the
lowest molecular fractions, although having a low in-
tensity, appeared. This clearly indicated that, when
hydrogen was used as chain-transfer agent, the active
sites responsible for low molecular weight were
affected. To further substantiate these assumptions,
with a further increase in the hydrogen amount
(PO-3), the intensities of peaks IV and V increased,
although peak I disappeared completely; this indi-
cated that the assumptions made were correct.

CONCLUSIONS

Deconvolution of the GPC profile into Flory distri-
bution was performed by the fitting of the chromato-
gram into separate curves corresponding to the
different molecular weight polymer fractions. RCGA-
based nonlinear, multivariate least-squares method-
ology was used to fit the experimental data points to
the theoretically calculated data points to optimize
the Flory parameters for the individual curves. The
strength of the RCGA was highlighted on the basis
of its capability to evolve from the local minima and
search the global minimum. The results indicate the
applicability of the methodology for the deconvolu-
tion of the GPC profile into Flory distributions for
the analysis of the active site distribution and corre-
lation with mechanistic aspects of 1-octene polymer-
ization. A strong correlation of the active center

TABLE I
Resolution of the GPC Curves into Individual Flory Components

Active site

PO-1 PO-2 PO-3

a f Mw a f Mw a f Mw

I 0.00025 0.43 908900 0.00022 0.01 1,035,800 — 0.00 —
II 0.00069 0.30 324100 0.00073 0.32 308,400 0.00084 0.14 267,500
III 0.00190 0.20 118000 0.00201 0.46 111,700 0.00190 0.43 118,100
IV 0.00564 0.07 39800 0.00603 0.18 37,200 0.00522 0.37 43,000
V 0.02152 0.00 10400 0.02140 0.03 10,500 0.01850 0.06 12,100

Figure 4 Deconvoluted Flory distribution curves for
GPC of poly(1-octene) synthesized at (a) PO-1, (b) PO-2,
and (c) PO-3.
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distribution with hydrogen concentration as a chain-
transfer agent was demonstrated.
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